Title | Evaluating large language models on medical evidence summarization. |
Publication Type | Journal Article |
Year of Publication | 2023 |
Authors | Tang L, Sun Z, Idnay B, Nestor JG, Soroush A, Elias PA, Xu Z, Ding Y, Durrett G, Rousseau JF, Weng C, Peng Y |
Journal | NPJ Digit Med |
Volume | 6 |
Issue | 1 |
Pagination | 158 |
Date Published | 2023 Aug 24 |
ISSN | 2398-6352 |
Abstract | Recent advances in large language models (LLMs) have demonstrated remarkable successes in zero- and few-shot performance on various downstream tasks, paving the way for applications in high-stakes domains. In this study, we systematically examine the capabilities and limitations of LLMs, specifically GPT-3.5 and ChatGPT, in performing zero-shot medical evidence summarization across six clinical domains. We conduct both automatic and human evaluations, covering several dimensions of summary quality. Our study demonstrates that automatic metrics often do not strongly correlate with the quality of summaries. Furthermore, informed by our human evaluations, we define a terminology of error types for medical evidence summarization. Our findings reveal that LLMs could be susceptible to generating factually inconsistent summaries and making overly convincing or uncertain statements, leading to potential harm due to misinformation. Moreover, we find that models struggle to identify the salient information and are more error-prone when summarizing over longer textual contexts. |
DOI | 10.1038/s41746-023-00896-7 |
Alternate Journal | NPJ Digit Med |
PubMed ID | 37620423 |
PubMed Central ID | PMC10449915 |
Grant List | R01 LM014306 / LM / NLM NIH HHS / United States R00 LM013001 / LM / NLM NIH HHS / United States R01 LM009886 / LM / NLM NIH HHS / United States KL2 TR001874 / TR / NCATS NIH HHS / United States P30 CA013696 / CA / NCI NIH HHS / United States |